NATURE OF THE STATE OF THE MEDIUM IN THE NEIGHBORHOOD
OF A CAVITY EXPANDING INTO A DILATING MEDIUM
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Substantial changes in the state of a solid medium can occur under the expansion of a gas
cavity therein, In particular, rupture of the brittle rock oceurs, The nature of the motion of
the ruptured rock differs substantially from the nature of the motion of the unruptured medium.
Thus, a change in the density of the ruptured rock occurs under shear strains., This phenom-

_enon is usually called dilatancy [1]. In addition, the strength characteristics also change under
rupture of the rock, The stress state of a medium in the neighborhood of an expanding cavity
at the time of cessation is analyzed in this paper. The influence of the ruptured rock charac~
teristics on the magnitude of the residual stress is investigated. The radius of the rupture
zone is determined and its dependence on the characteristics of the medium is investigated.
The volume of the threshold space in the neighborhood of the cavity being formed because of
dilatancy is calculated. The nature of the stress state in elastic—plastic media which do not
dilate under plastic flow is also investigated,

1. Let us examine adiabatic expansion of a spherical gas cavity in an elastic-—plastic medium. A shock
wave in which the stress exceeds the strength of the medium under crushing, starts to be propagated at the
initial instant in an elastic—plastic medium; i.e., the shock front agrees with the rupture front, It is assumed
that compression of the medium by a certain constant magnitude £ independent of the wave intensity [2]

e = (p — gg)/p = const
occurs on the shock front.

Plastic flow of the ruptured medium loosened {compressed) because of dilatancy occurs between the ex-
panding cavity and the shock front. We assume that the rate of dilatancy A is constant in the whole plastic
flow domain, The plastic flow is described by the C oulomb—Mohr fluidity condition [3]

l6, — 0| = —sin (o, + o) + 2ccos ¢,
which under expansion of the cavity acquires the form
(1 - a)og — 0, — ¥ =0, ' (1.1)
where
o = 2sin ¢/(1 —sing); ¥ = 2c cos ¢/(1 — sin ).
The flow of a granulated medium behimd a shock front will be described by the equation of motion

o, 05 o) =2 "
pir, At T 0r/ or = r ] (102)

Gr) 7 g_—0
= LS

the fluidity condition (1.1), and the dilatancy condition [1}
I=2A) T (1.3)
For spherically symmetric motion and A=const, Eq, (1.3) becomes
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(1.4)

Intecration of condition (1.4) determines the velocity field in the plastic zone under expansion of the cavity:
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v(r, t) = o M=TTR 1.5)

-

Within the framework of this model, an expression has been obtained in [4] for the soil density while
taking account of the compressﬁon on the shock front and the loosening because of dilatancy:

a\n+t A
1—(7) a. Y1
P, 0 =0 —p—— +2)7"| (1 +e), (1.6)
where a, a are the initial and running radii of the cavity, p, is the initial density, and n is determined from
(1.5).
Substituting (1.1), (1.5), (1.6) into (1.2), we obtain

[ ¥ %. . 2m O oY
p(r.t)(—}—nﬁ%)=7—:——-— - 1.7

21 r (1-1—1?'

oy = (0, — V)1 - ).

Integrating (1.7) between @ and r, we obtain

) = —e —04 @—n+{ _t 22 e_9n 2¥ ¢ a e 200,
0, () =C()r™" + r k2" HF ) —r gt F.0 + 5! _(T,’ J ©=TFT (1.8)
Fl (r = 90(1 + 8) j‘ [ii——i"sfi _J,L"’Y) Hén+l.1A§"_0—2d§s (1.9)
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Fo(r)=p,(1 - ¢ j'[

where £ =a/r, air

The quantities C (t), Xp(t), Ap (t) are found according to the boundary condition on the cavity wall
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Orlr-a=—n(M) = —n, ("T} , (1.10

where v is the adiabatic index, and the boundary condition on the rupture front. Using (1.10), we find
C{t) = —pla)ao.
At the end of cavity expansion the shock damps because of dissipative processes and degeneratesinto an
elastic predecessor; i.e., 2 dynamic waveless expansion of the cavity sets in {5]. Even at this stage, the rup-

ture front radiates elastic waves. The propagation equation for small perturbations in an elastic medium has
the form

1 d*v

graddivv = ;E bE -

Let us consider that cy>> a at the stage of waveless expansion of the cavity, Then the elastic domain can be
considered an incompressible medium, The velocity field in the elastic domain has the form
u(r, 1) = AJd)/r%, A, = a’a. (1.11)
The elastic strains are described by the equation of motion
po(dv/dL + vavldr) = da. for + 2(a, — a,)ir (1.12)
and the convective Hooke relationships [6]
Edv/or = o, — 69, Bulr = (i/2)(c, — 0,), (1.13)

where E is Young's modulus and the point denotes the total derivative with respect to time. Using (1.11) and
(1.13), we obtain

G — 0, = 2EA/r%, 0, — 0 = 2EIn (1 — u/r), (1.14)
where u is the displacement of a material point.

In order to determine the magnitude of the shift into the elastic domain, let us use the equation of mass
balance
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Sowr,orar={ o¢, orar, r—u>Rg, (1.15)

a o

where R is the radius of the rupture front, We finally obtain from (1,6), (1,14) and (1.15)

0, —0y = LF 1n{1 — L[r—af - 307, (R)]}__—._% Eln [1 - -'%“3’] (1.16)
where
i
gt nti A
Fy(R)=(1+¢) S [ii—f—s—J« (—0) g."“] & (1.17)
. a/R
Then the solution of (1.12), taking account of the boundary condition for the stress at infinity
6,(r) > —pn, ' (1.18)

where pp is the lithostatic pressure, has the form

. iE .. [g(R he A
o, (r} = '—Ph“‘_glez[g',(a )]‘Po(fmﬁfr)’

where
. ¢ dn
le (.T) == — Sln(i —"n)-jn—.
0

The solutions in the elastic and plastic domains should be "oined® at the rupture front, The conditions
on the rupture front have the form
G, (R — 0) = o (R + 0), A/r* = Ap/rn {1.19)
to the end of cavity expansion,
2. Let us examine the behavior of op in the elastic and plastic domains up to the end of cavity expansion;
in this case A, = Ap =0, (a0/a,)"*' < 1, & « 1, where @y, is the radius of the cavity at the time of cancellation.

Since the integral in (1,17) is determined by small £, then by neglecting the small domain 1 — g8+ £
(ay/ am)n+1 for the integrand, the approximate expression can be used:

B®=[1—EHP Lo (t—art)d, o Ighere,

This latter equality is valid down fo £ =0.9; i.e., r = 1.1¢,. A graph of the function ¢4(£)= (A= 0.1;n=1.7)
from which it is seen that the integrand ¢3(£) yields a very small contribution in the interval [0.8, 1], is given
in Fig. 1. Hence, the expression

1

ram= | —ar g -5 [(5) - (5)]

a
a/R

is valid for the integral (1,17).

The volume replaced by the spherical cavity during the expansion of an incompressible plastic medium

equals a%n - ag. In our case, loosening (compression) occurs in the plastic zone because of dilatancy. Hence

the volume displaced by the cavity equals
R 3A
g(Ry) =a, (,,—'") —aj. (2.1)
- The volume converted into pore formation during loosening (A > 0) equals
R _\3A
Tp=ai| (=) 1]
m
Substituting (2.1) into (1.16), we obtain the solution in the elastic domain

4E A
=0 (1) =Pr+ g5 & (Bn) + 0o (2.2)
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Here the expansion In(1 — 1) ¥—19 at 7 <1 was used, As is seen from (2,2), the radial stresses can reach a
minimum at the pointr,,:

T, =
w=lmige "’m’]
If loosening occurs in the plastic domain, then rx4 is shifted from the cavity.

Let us turn to an analysis of the plastic domain, To obtain the solution in the plastic domain, the inte-
grand ¢4(£, w) of the integral (1.9), whose graph is shown in Fig, 2, must be investigated, Let us expand
¢4(¢, w) in powers of A and let us hmit ourselves to a linear term, Expanding In(1— £2%) in series, we
obtain the following expre: an

! 00
Fi(r) =p, j Er-o—24E — Ap, 3 f Erntitn—e—2gF —

Omjr k=1 Cm/r

. (am‘)h(n-l-i)-l-—n—o)—i
a, @—nit o 1 S
w~n+1[( ) 1}_Apo[k§1k(n+1)-f—n——m~1.—kgik(n—i—1)+n—m—4]

Retaining just the main terms in these series, we obtain for oy at the time of stopping during expansion of the
cavity (for r> 1,1an,)

O (CRFs & - (e (B RS S R
- The expression obtained for «w — n+1 =0, Le, a=q;= (1‘-2A)/ (1+4A), goes over into the solution
a,(r)--—{p(am)+ =) +n s A, | @4

Therefore, the classificatmn a) v<a< ag b) a=ag c) o> a, should be introduced in a medium with
"dilatancy instead of the classification {6]. As is seen from (2.3) and (2.4), radial stresses in the plastic domain
can achieve a maximum at the point rx* ‘

o (m;—n+1)m[ (m)-}—l]a"—‘ +(m—-—n—|—l),1\m}1/10—ﬂ+ﬂ

"*="m{ =" =1 17" F—D(r—w)
P
or
Y1 e
re_ L, A _]p(am)+7]am __
a. @ n-+1 Poh',] ) E=y

Let us use the "juncture” condition (1,19) for the solutlon (2.2) in the elastic domain and the solution (2.3)
in the plastic domain to estimate the component containing | A |.

3. Let us first examine brittly fractured rock, Let us consldefr fracture to occur if the maximal com-
pressive stress reaches o*. For such rock it can be considered that Y<<o %, Taking into account that the
equality —or(Ry,) = o, should be satisfied at the time of stopping the cavity, we obtain an equation for R,
and py| Apl:

Y 2,\° Y 4Ea} Rm\3A a, \3 1 [ (a o—n+1 A a_\o—nii
G*Z[P(am)_{’"&’](ﬁ) _7_{0*——ph_ﬁ;§[(a—) _(a_:n)} {(Ov-ﬂ—(—i 1— R‘;:) J_Zn—m(ﬁ> },(3‘1)

m
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m. m.

= 0ol BZ“{1+—‘—-—[1_(;_:;)‘°'"“] A (”M)Q1"+‘}. (3.2)

©o—n+1 T 2 "0 \Bm

Since Y < 0, i,e,, adhesion in the fractured rock is small compared to the strength of the unfractured rock,
it can then not be taken into account, Let us write the solution of (3.1) and (3.2) as well as the expressions for
T, Ty Vp for different values of w:

Ho—n--1>0

Ro—q 4F, A E/31—A)
(nl _ " {9 ‘7‘ j)h] ! 1 (3'3}
G*L(m—-lz D= l
oo [ .
1 O —n+1)0y. {3.43
mn
[_o wa, " pa,,) , (6—n-" 1) Aw li‘v(m_n%—“

Fo =@

. e e g

=l a— e T (r— D2 —w) '
. 4Eg (a0 —n - 2'11;'2
]'3~¥ == _— T

3Hmd, O —1n - -1_! 1

P
Qa*lf?n{(_w——n-l~ 2)-—-——£] .
V, = * Ted o g8
P 4E “m

As is seen from (3.3), the radius of the fractionation zone diminishes with the rise in strength of the shattered
rock in this case. This effect is determined entirely by the influence of the dynamics of the motion of the
medium in the neighborhood of the cavity on the nature of the stress state. Let us note that the rise in litho-
static pressure results in the growth of Ryn/a y (if the dependence of o+ on the depth is not taken into account).
Let us also note that acceleration of the reverse motion, defined by (3.4), grows with the rise in strength of

the shattered rock, and this effect is apparently related to the growth of the gradient of radial stresses with

the rise of w:

2) w—n--1<<d

(3 17308 —A)
P = | — B :
2
96, (1 22) (8.5)
T O
Do [" (nm)n-—c-)~1
== P — ) — Ay
T o (n—o— 1) {72 (3.6)
ry—a - o Ot 1P (ay) (Emin—o—t _(n—o—DAe —iftn—e—b)
* m&n__ L (I'L—~‘l)(7,-‘1{,zl—1 (’m) (n—1)(in — @)
Fas = 4Eg (fim) /[fmx;n—mwrtx;z_
ek = 3(”——(0—1)371&0*\11”1/ —1 5
. 90, R3 (1 — p, ‘o
DAt L Y 3.7

In this case the radius of the pulverization zone is independent of the strength of the shattered rock and agrees
withthe quasistatic estimate [5]. Let us also note that acceleration of the reverse motion drops with the
diminution in w since the main dependence on w in (3.6) is governed by the quantity (@ .,/ Rm)n“""ilf

3) w1
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The expressions for Rm and Vp, are analogous to (3.5) and (3.7), respectively. Let us present estimates which
show how much certain quantities change because of dilatancy by considering that A varies in an interval be-

tween 0,1 and 0,2, Thus, the radius r, increases by 5.5-11%, the peak stress op(r«) by 3-6%, the radius of
the pulverization zone by 18-36%.
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A more detailed dependence of r 4 on the parameters « and A is presented in Fig, 3, It is seen that
dilatancy affects the pinch radius rx slightly, At the same time, the change in strength of the pulverized
medium substantially affects the quantity r« in the domain of small ¢ (o < 0,6). In the domain of large o (o>
0.6), the dependence of r, on « is quite weak,

The qualitative behavior of —or(r) at the time the cavity stops is presented in Fig. 4 for different values
of A and =, It is seen that a change in A does not result in a qualitative change in the nature of the stress
state, For a more detailed characteristic of the stress state, graphs of — op(r), — 0 ,(r), and p(r) = —(1/3)(oy +
20 <p) are presented in Fig. 5 for A=0, w=1, It is seen that in the plastic domain all these quantities have a
maximum, where the peak stress is sufficiently close to the cavity (r.~2ay,). The stress —o,(r) experiences
a jump at the boundary of the rupture zone and becomes tensile. Therefore, there exists the possibility of
radial crack formation. The influence of radial cracks is not taken into account in this paper, hence the results
obtained are applicable for sufficiently large depths, Such a nature of the stress is associated with taking ac-
count of the dynamic terms, Thus, the pressure in the elastic domain becomes less than the lithostatic pres-
sure by the quantity p, | Agl/r.

The dependences of the radius Ry, of the pulverization zone on the parameters « and A are presented in
Fig. 6. It is seen that in this case the magnitude of the dilatancy substantially influences the quantity Ry, A
change in dilatancy can hence result in a change in the qualitative dependence of the radius of pulverization
due to the properties of the pulverized rock.

4, Let us examine the case a=0, i.e., an ideally plastic medium. The Coulomb—Mohr fluidity condition
(1.1) goes over into the Tresk condition

Oy —0, =Y. (4.1)
Taking account of (1,16) and (1.18), the solution of (1.12) has the form

4E .. a8 —a3 'i.e a2
== 1 (25) < (B2 - 2).
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Taking account of condition (1,10), we write in the plastic domain

6, (r) = —p(a) + 2V In - 4 peh (__1___:_)_9_02"_%(71:___:_‘_)

Let us use the condition (1.19) on the rupture front at the time the cavity stops (}\ = lp A), then

4B " “o 4 8ofM po ;M

S — plaw) + 27 2

Using the fact that (2,/am)®«1, we write the solution in the plastic domain

0, ) == (am) +2¥In L — (1 - -> (zym ) trn + (Rim- (4.2)
As is seen from (4.2), the radial stresses can reach a maximum at the point r,;
re = 58 [~Y1n~ + Pa—plam) + - (a:ﬂ {4.3)
Using (1.16) and (4.1) results in expressing the radius of the rupture zone in an ideal plastic medium as
Ry = ap, (g .5_}“3. (4.4)

Substituting (4.4) into (4.3), we obtain

re 1 2 E 1 r— () 4.5
T‘S’[ln(?y_')'*"ij”*‘"”ﬁ’—‘—' (4.5)

i

As estimates from [6] show, for small py we have p(@y)—pp > 0. Taking into account here that Y/E ~
102 for ideal plastic media, the radius r, turns out {o be less than 2.5a 1; i.e., the maximal stresses will
be near the cavity or on its boundary. As the lithostatic pressure grows p(a ) — pp decreases and can change
sign, In this case ry grows, and the domain of maximal compressive stresses is shifted from the cavity,

We obtain for the maximal compressive stresses from (4.2) and (4.5)

. ' 1
—Ur(l*):p(am)‘;"zy{—:"' 1HT——'J.
m m
Thus for r.= 2,5 ay, (for py ~p(aym)) the maximal stress exceeds the pressure in the cavity by a quantity
~1,5Y,

Analysis of the stress state in the neighborhood of an expanding cavity at the time of stopping permits
noting the following:

1, Pinching exists in a dilating medium with dry friction for o> ox, A dependence of o« on A is ob-
tained: ax=0%+0.1A (2% =0.06; ¢% =1.5°. However, as is indicated in [6, 7] ¢ ~12-30° in real soils with
friction. Figure 3 shows that for these angles the dependence of ry on « is sufficiently weak, and r =~ 2a .
The peak stress —op(r 4} moves from the cavity under loosening and diminishes; under compression a shift
towards the cavity occurs and the peak is increased,

2. The radius Ry, of the pulverization zone and the minimum in the elastic domain r,, depend substan-
tially on w. Under loosening, Ry and vy increase, while under compression they decrease,

3. In the case of plastic media, the zone of maximum compressive stresses turns out to be near the
cavity for moderate lithostatic pressures, The peak stress moves away from the cavity as the lithostatic
pressure grows,
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MODEL OF THE SOIL AND COMPUTATIONAL COMPLEX
FOR THE ANALYSIS OF UNDERGROUND EXPLOSIONS

V. V. Bashurov, Yu. 8, Vakhrameev, UDC 518,12:539.3
S, V, Dem'yanovskii, V, V, Ignatenko,
and T, V, Simonova

In underground explosions executed in the interests of ejection, downcomer funnel or bulging
hillock formation, the sofl properties influence not only the quantitative parameters substan-
tially, but also the qualitative pattern of the explosion. Thus, under the same conditions of
charge embedding and power, a downcomer funnel or bulging hillock can be formed depending
on the properties of the rock. The majority of explosions are performed in hard rock. Hence,
the model of the sofl should be suitable to describe its fundamental properties, A model of
rocky soil is presented in this paper, the scheme for a numerical computation of the problem
is described, and results of certain computfations are presented.

1. An unruptured medium is considered elastic, Rupture sets in instantaneously upon the attainment of
definite criteria. Right after rupture, which occurs in brittle material under insignificant strains, the pulver-
ized rock consists of separate compactly contiguous pieces. In this state its volume density is 1.5-1.7 times
greater than in rubble fill. The compact fractured medium and loose rubble differ quite radically in the ef-
fective value of the internal friction and ~100 times in the volume compressibility. It is hence important to
take account of the gradual change in the properties of the ruptured medium as it loosens.

In both states, before and after rupture, the medium is considered isotropic. The pressure and degree
of looseness are taken as parameters of the state in this model, The influence on the mechanical properties
of the size of the pieces, their shape, and temperature are neglected,

The equations of state of a ruptured medium are written in differential form. The change in density is
defined by the equation
dp/o = dp/K12(p, p) — D(p. p)V/ T2t (1.1)

where J, is the second invariant of the strain rate deviator.

The first term on the right corresponds to pure volume strain, while the second describes the dilatancy
effect. An analogous equation was examined in [1] in application to friable media and soft soils. In this paper
(1.1) is extended to all states of ruptured rocky soil, including rubble, and a state with dense packing., Hence,
Ki,» and & are understood to be strongly varying functions of their arguments, The irreversibility of the
volume strain is taken into account by the fact that the absolute value of the volume compressibility K; , de-
pends on the sign of dp. In the construction of the function ¢(p, p) it is assumed for simplicity that:

a) for dp=0 the shear strains result only in loosening of the substance;

b) the loosening intensity vanishes at the extreme curve py(p) (Fig. 1) corresponding to monotonic com-
pression of the loosest rubble, The domain of possible states of the ruptured medium is shown in Fig. 1.
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