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Substantial  changes  in the  s t a te  of  a solid medium can  occur  under  the  expansion of a gas  
cav i ty  t h e r e i n .  In pa r t i cu la r ,  r up tu re  of  the  b r i t t l e  rock  o c c u r s .  The na ture  of  the mot ion o:[ 
the rup tu red  r o c k  di f fers  subs tant ia l ly  f r o m  the na ture  of the motion of the unruptured  med ium.  
Thus,  a change in the densi ty  of the rup tured  r o c k  o c c u r s  under  shear  s t r a ins .  This  phenom-  
enon is usual ly  ca l led  di ta tancy [1]o In addition, the s t rength c h a r a c t e r i s t i c s  a lso  change under  
r up tu r e  of  the rock .  The s t r e s s  s ta te  of a med ium in the neighborhood of an expanding cavi ty  
at  the  t i m e  of c e s s a t i o n  is  analyzed in th is  pape r .  The influence o f  the rup tured  r o c k  c h a r a c -  
t e r i s t i c s  on the magni tude of the res idual  s t r e s s  is invest igated.  The r ad ius  of  the rup tu re  
zone  is de te rmined  and its  dependence on the  c h a r a c t e r i s t i c  s of  the  medium is  invest igated.  
The volume of the th resho ld  s p a c e  in the  neighborhood of  the cav i ty  being f o r m e d  because  of 
di la tancy is ca lcula ted .  The na ture  of the s t r e s s  s ta te  in e l a s t i c - p l a s t i c  media  which do not 
di late under  plast ic  flow is a lso  invest igated.  

1. Le t  us examine  adiabat ic  expansion of a spher ica l  gas  cavi ty  in an e l a s t i c - p l a s t i c  med ium.  A shock 
wave in which the s t r e s s  e~ceeds  the stren~~ of the medium under  crushing,  s t a r t s  to be propaga ted  a t  the  
initial instant  in an e l a s t i c - p l a s t i c  medium~ i .e. ,  the shock f ront  awrees  with the rup tu re  f ront .  I t  is  a s su med  
that  c o m p r e s s i o n  of the med ium by a c e r t a i n  cons tan t  magnitude e independent of the wave intensity [2] 

s = (p --P0)'P = const 

o c c u r s  on the shock front .  

P las t i c  flow of  the  rup tu red  med ium loosened  (compressed)  because  of di la tancy o c c u r s  between the ex-  
panding cavi ty  and the shock f ront .  We a s s u m e  that  the r a t e  of di latancy A is  cons tan t  in the  whole plas t ic  
flow domain .  The plas t ic  flow is de sc r ibed  by the C ou lomb--Mohr  fluidity condition [3] 

[~r - -  a~l = --sin ~P(~r § ~ )  .--' 2C COS qc, 

which under  expansion of the  cavi ty  a cqu i r e s  the  f o r m  

( i  - -  cr - -  cr~ - -  Y = O, ( 1 . 1 )  

where  

a = 2 sin q~/(i --  sill g.); Y = 2c cos q~/(i --  sin ~). 

The  flow of a granula ted  medium behi~t a shock f ront  will be desc r ibed  by the  equation of motion 

or o~,) 0% ,~ % - - %  
p (r, t) ~/- + v ~ or r ' (1.2t 

the  fluidity condition (1.1), and the  d i l a tancy  condition [1] 

:, =  : VxT (1.3) 

F o r  spher i ca l ly  s y m m e t r i c  mot ion and A =const ,  Eq. (1.3) becomes  

, .) = t o,. ( 1 . 4 )  
- ~ ' r  ~ - -  r - ~ - - -  . 

Intewration of condition (1.4) d e t e r m i n e s  the veloci ty  field in the plast ic  zone under  expansion of the cavity:  
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v (r, t) ~.p(t) 2 --A ----': n = - -  r" ' t + A "  (1.5) 

Within the f r a m e w o r k  of  this  model,  an express ion  has  been obtained in [4] for  the soil densi ty while 
taking account  of  the compre s s ion  on the shock f ront  and the loosening because  of dilatancy: 

p(r, t ) = p  + .  (1.6) 

w h e r e  a0 ,  a a r e  t h e  i n i t i a l  and  r u n n i n g  r a d i i  o f  t h e  c a v i t y ,  P0 i s  t h e  i n i t i a l  d e n s i t y ,  a n d  n i s  d e t e r m i n e d  f r o m  
(1 .5 ) .  

S u b s t i t u t i n g  (1 .1 ) ,  (1 .5 ) ,  (1 .6)  into  (1 .2 ) ,  w e  o b t a i n  

p (r, t) ~ r" - -  n r ,n+l ]  Or "- : ~ - t  r" a - r t  r '  (1.7)  

o~ = ( ~  + Y),'(i . - -  ~). 

I n t e g r ~ lng  (1.7) between a and r ,  we obtain 

! 

Fl(r)=Po(l_~.e ) y [ , __ , n  '.--I ,.A_f a o ) n - l . n . { _ l l A  . . . . .  o - - 2 - -  
: 1 - - e  ' ', ,t , g ] ~' a~, 

a / r  

2~ 
o = a + t '  (1.8)  

(1 .9)  

i 
t ~ n + t  �9 ~- F._(r)=po(l+e)J' [ 2~..~ + ( ~ ) n  '~,,+'IA~: . . . . .  ,.~- 

whore ~ =a / r .  ~  

The  q u a l i t i e s  C (t), ~p(t), Xp(t) a r e  found according to the  boundary condition on the cavity wall 

f a,, ' ,3"t 

= - , ,  ( , ' )= - p o  (1.10) 

where Y is the adhbatic index, andthe boundary condition on the rupture front. Using (1.10), we find 

C(t)  = - - p ( a ) a  ~  

At the  end of cavi ty  expansion the  shock damps because  of dissipat ive p r o c e s s e s  and degenera tes  into an 
elast ic  p r e d e c e s s o r ;  i .e . ,  a dynamic waveless  expansion of the cavi ty  sets  in [5]. Even at this  stage, the rup-  
t u r e  f ront  r ad i a t e s  elast ic  waves.  The  propagat ion equation for  small per turba t ions  in an elastic medium has 
the fo rm 

g r a d d i v v =  I a"-v 
a t " - "  

Let  us  cons ide r  that  c0)> ~ at  the stage of waveless  expansion of the cavi ty .  Then the elastic domain can be 
cons idered  an incompress ib le  medium.  The veloci ty field in the elast ic  domain has the form 

v(r ,  t) = ;~e(t)/r ' ,  X e ---- a - , .  (1.11) 

The  elast ic  s t ra ins  a r e  de sc r ibed  by the equation of motion 

9o(Ov,,'Ol + rOy~Or) = O~r/Or + 2(~r -- %)/r (1.12) 

and the convect ive  Hooke re la t ionsh ips  [6] 

EOL,/Or = ~I r - -  ~ , ,  E v / r  = (i/2)(~, -- ~ (1.13) 

where  E is  Youngts modulus and the  point denotes the  total  der iva t ive  with r e s p e c t  to t ime .  Using (1.11) and 
(1,13), we obtain 

~ - -  ~r  = 2 E X d  r~, ~r -- o~ = 2EIn (t -- u/r), (1.14) 

where  u is the  d isp lacement  of a ma te r i a l  point.  

In o r d e r  to de t e rmine  the magnitude of  the  shift  into the e las t ic  domain, le t  us  use  the equation of  mass  
balance 
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r r ~  

,[p(r,  t) r ' d r =  .t' P(r, t) r*dr, r - - u >  B, 
a aa 

where R is the radius  of the rupture  front.  We finally obtain f rom (1.6), (1.14) and (1.15) 

2 ln{t ---~[R3--a0 

where  
i 

air  

Then the solution of (1.12), taking account of the boundary condition for the s t ress  at infinity 

~(r) -+ _ph,  

where Ph is the li thostatic p ressure ,  has the form 

4E Li [g(R)] (~e s / o~(r)=~--ph T ~ L - F - j - P ~  2,'/' 

(1,!5) 

(1.16) 

(1.17) 

(1.18) 

where 

0 

The solutions in the elastic and plastic domains should be ~joined" at the rupture  front.  The conditions 
on the rupture  front  have the form 

%(R - -  O) = %(R + 0), l~e/r 2 = t,p/r" (1.1.9) 

to the end of cavi ty  expansion.  

2. Let  us  examine  the behavior  of Vr in the e las t ic  and plas t ic  domains  up to the  end of cavi ty  expansion;  
in th is  c a s e  X~ = ~ =  O, (ao/am)n+ x << 1, s << 1, where  a m is  the r ad ius  of  the cavi ty  at the t i m e  of cancel la t ion.  
Since the in tegra l  in (1.17) i s  de t e rmined  by smal l  ~, then by neglect ing the smal l  domain 1 -  8n+1 
(ao/am) n+l for  the integrand, the approx ima te  express ion  can  be  used: 

This  la t ter  equality is valid down to ~ =0.9; i.e., r =  1.1a m. A graph of the function ~3(~)= CA = 0.1; n = 1.7) 
f rom which it is seen that the integrand ~o3(~ ) yields a very small  contribution in the interval [0.8, 1], is given 
in Fig. 1. Hence, the expression 

t 

air  

is valid for the integral (1.17). 

The volume replaced b y t h e  spherical  cavity during the expansion of an incompressible  plastic medium 
equals a m3 _ a0 .3 In our case, loosening (compression) occurs in the plastic zone because of dilatancy. Hence 
the volume displaced by the cavity equals 

\ am--] --a~. (2.1) 

The volume converted into pore formation during loosening (A > 0) equals 

Substituting (2.1) into (1.16), we obtain the solution in the elastic domain 

4E ~e 
- -  ~r (r) = Ph -4- 9 - T  g (Rm)  -}- P0 -#'- (2.2) 
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H e r e  the  expansion l n ( t  - ~) ~ - W  at  ~ <<1 was used.  As  is  seen  f r o m  (2.2), the rad ia l  s t r e s s e s  can  r each  a 
m in imum a t  the  point r**: 

4 t 
" . ,  = [ ~ g ( " , . ) l ~ .  

L-V i~et J 

I f  loosening o c c u r s  in the  p las t ic  domain,  then r * *  is  shif ted f r o m  the cav i ty .  

Le t  u s  tu rn  to an -n~ l y s i s  of  the p las t ic  domain.  To obtain the  solution in the  p las t ic  domain,  the in te-  
g rand  ~ i (~ ,w)  of  the in tegra l  (1.9), whose graph  i s  shown in Fig .  2, mus t  be invest igated.  Let  us  expand 
~i(~,  w) in powers  of  A and le t  us  l imi t  o u r s e l v e s  to a l inear  t e r m .  Expanding ln(1 - ~n+l )  in s e r i e s ,  we 
obtain  the  following exprer ~n 

! l 

F, (r) = ~ j ~--~-~ d~-- Ap. ~ k ( n - } - l ) + n - e ) - - 2 d ~  " 

ore/r  h = l  am/r  

= " , [ (~ - )  - 1  aOo ~ ( ~ + , , + ~  , - = ,  0 ) - - n  -~-  h = i  - -  " 

Retaining jus t  the ma in  t e r m s  in t he se  s e r i e s ,  we obtain fo r  qr  at the t ime  of stopping during expansion of the 
cav i ty  (for r > 1.1a m) 

o.,~)-- §  + • + o  , , . ,  ..-,~'~ f ~  [, ~ (~)o_.+,] ~. ~_ o (~)o_n+,} ,~.~, 

The  e x p r e s s i o n  obtained for  w - n + l =  0, i .e. ,  a =  a 0 f ( 1 - - 2 h ) / ( l + 4 A ) ,  goes  o v e r  into the  solution 

- [ ~ ( o . )  + ~ 1('-t" "~ ~ = ~- "~,,~-, + ~ ( "  L -+,)" (~" 
T h e r e f o r e ,  the  c l a s s i f i ca t ion  a) 0 < a < a0; b) a = qr e) a > a 0 should be  introduced in a med ium with 

d i la tancy ins tead  of  the  c l a s s i f l cg t ion  [6]. As  i s  seen  f r o m  (2.3) and (2.4), r ad ia l  s t r e s s e s  in the plas t ic  domain 
can  ach i eve  a m a x i m u m  a t  the  point r . . -  

a a) (~176 :} ~--a_-_F_ t) a~..]ff(---+l) 
r, = " { . = t  ("-~)Po[Lt ( . - i ) ( 2 . - ~ ) j  

o r  

r la~ | ~ ( '~) + "~'/ l i t  

t - I-  A In ~ = --~- ~ + ~  
/ 

Po t~,p| ' ~=%" 

Le t  u s  u se  the njuncture n condition (1.19) fo r  the solution (2.2) in the  elast ic  domain and the solution (2.3) 
in the p las t ic  domain to e s t i m a t e  the  component  containing I ~p [ �9 

3. Le t  us  f i r s t  examine  br i t t ly  f r a c t u r e d  rock .  Let  us cons ider  f r a c t u r e  to occur  if the max imal  c o m -  
p r e s s i v e  stress reaches ~,. For such rock it can be considered that Y<<~,. Taking into account that the 
equality -~r(Rm! = ~, should be satisfied at the time of stopping the cavity, we obtain an equation for R m 

and p0[ ~p I: 
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, [ . =t,ol  p~ m i +  1 (3.2) 

Since  Y << q , ,  i . e ~  adhes ion  in the  fractured  r o c k  i s  smal l  c o m p a r e d  to the  s trength o f  the  unfraclalred rock,  
it can  then not be taken into account .  Let  us  wr i t e  the  so lut ion o f  (3.1) and (3.2) a s  wel l  a s  the e x p r e s s i o n s  for 
r , ,  r * * )  Vp for different  va lues  of  w: 

I) (')--'~ I>0 P,., = . ,.,, { [ ~'~ 1 re( l -A) .  
pl~][. 9o, ( o , - , , .  

,Oo izpl = (~,) _ ~ + I) ~ . ,  

! (') eoa~--ll'(am) , ( r  l 1''(~ 
~:* := am I ' ' - -1  (n ' , . . . .  (n D(2n-- o~)J" 

(3.3) 

(a.4) 

[4Eg ft{..) o) -- n -:- 2]L2 
"** : :  [ ~  o---~-.-]j 

]~P = 4E m 

AS is  seen  f r o m  (3.3), the r ad ius  of  the  f rac t ionat ion  zone d imin i shes  with the  r i s e  in s t rength of the sha t te red  
r o c k  in th is  c a s e .  T h i s  ef fec t  i s  d e t e r m i n e d  en t i re ly  by the  influence of the dynamics  o f  the mot ion of  the 
med ium in the neighborhood of the  cav i ty  on the  na ture  of the s t r e s s  s ta te .  Le t  us  note that  the  r i s e  hi l i tho-  
s tat ic  p r e s s u r e  r e s u l t s  in the growth of R m / a  m (if the dependence of a .  on the  depth is  not t aken  [.nto account).  
Le t  us  a lso  note tha t  a c c e l e r a t i o n  of the r e v e r s e  motion,  defined by (3.4), grows with the r i s e  in s t rength  of  
the sha t t e r ed  rock ,  and th i s  effect  is  apparen t ly  r e l a t ed  to the growth of the gradient  of r ad ia l  s t r e s s e s  with 
the  r i s e  of  w: 

2) ( .~--n- i -  1 < 0  
r ~  4E -]ll3d--A). 

Ph 

(,,~ 
/ , n - -  I 
_1 m 

r ,  = a , .  ;i-' t ' (. . O ~ . n ' ; y '  t ".d ( - ; - : - - i~ , ; - - -~ j  

[ 4E~ (Bin) t f tm ' ,n - - (o- - l ] l ,  '2 

" * *  = L3 w -%-7;~'- " iT . ,~ .  (-~m) j ; 

(3.5) 

(3.8) 

In th is  c a s e  the  r ad ius  of  the  pu lver iza t ion  zone is  independent of  the  s t rength  of  the  sha t t e r ed  rock and a g r e e s  
wt th the  quasis ta t ic  e s t ima te  [5]. Le t  us  a l so  note that  acce l e r a t i on  of the r e v e r s e  mot ion  d rops  with the 
diminution in w s ince  the ma in  dependence on w in (3.6) is auverned by the  quantity ( a m / R m ) n - w - l :  

3) ,.) =: n - -  t 

~,,, tipt 
Rn --I 

I',~ t A ~* Ill --= == - -  
I n  ~elfm' nra to ' n - 1 ~.,.r%.~" r., . .--t  ' 

r** = L 3n.,~:- %, j 

The e x p r e s s i o n s  for  R m  and Yp a r e  analogous  to (3.5) and (3.7), r e spec t i ve ly .  Le t  u s  p r e s e m  e s t i m a t e s  which 
show how much c e r t a i n  quant i t ies  change because  of di la tancy by cons ide r ing  that  A v a r i e s  in an interval  be -  
tween 0.1 and 0.2. Thus,  the r ad ius  r ,  i n c r e a s e s  by 5.5-11%, the  peak  s t r e s s  a r ( r . )  by 3-6%, the  r ad ius  of 
the  pu lver iza t ion  zone by 18-36%. 
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A m o r e  detai led dependence of r ,  on the p a r a m e t e r s  ~ and A is p resen ted  in Fig.  3. It is seen that 
di latancy af fec ts  the pinch rad ius  r .  sl ightly.  At the same t ime ,  the change in s trength of the pulver ized 
medium substant ia l ly  a f fec ts  the quantity r ,  in the  domain of small ~ (~ < 0.6). In the domain of l a rge  (~ (~ > 
0.6), the  dependence o f  r ,  on ~ is quite weak. 

The  qual i ta t ive behavior  of  - a r ( r )  at the t ime  the cavi ty  stops is p resen ted  in Fig.  4 for  different  values  
of  A and ~ = % .  It is  seen  that  a change in A does not r e su l t  in a quali tat ive change in the na ture  of the s t r e s s  
s ta te .  F o r  a m o r e  detai led c h a r a c t e r i s t i c  of the  s t r e s s  state,  graphs  o f - a r ( r ) ,  - ~ r  and p(r) = -(1/3)Ca r + 
2a~)  a r e  p resen ted  in Fig .  5 for  A=0, w = l .  It is seen that in the  plast ic domain ali these  quanti t ies have a 
maximum,  where  the  peak s t r e s s  is sufficiently c lose  to the cavi ty  ( r ,  ~ 2am).  The s t r e s s  -ar exper iences  
a jump at the boundary of the rup tu re  zone and becomes  tens i le .  The re fo re ,  t he re  exis ts  the possibil i ty of 
radia l  c r a c k  format ion .  The influence of  radia l  c r a c k s  is not taken into account  in this  paper,  hence the r e su l t s  
obtained a r e  appl icable f o r  suff icient ly l a rge  depths. Such a nature  of the s t r e s s  is associa ted  with taking ac-  
count  of  the dynamic t e r m s .  Thus,  the p r e s s u r e  in the elast ic  domain becomes  l e s s  than the l i thostat ic p r e s -  
su re  by the quantity P0 [ ~ e [ / r .  

The  dependences  of the r ad ius  Rm of the pulver iza t ion zone on the p a r a m e t e r s  a and A a r e  p resen ted  in 
Fig .  6. It is seen  that  in th is  c a s e  the magnitude of the dilatancy substant ial ly influences the quantity Rm. A 
change in dilatancy can hence r e s u l t  in a change in the qual i ta t ive dependence of the rad ius  of pulver izat ion 
due to the  p r o p e r t i e s  of  the  pu lver ized  rock .  

4. Le t  us  examine  the c a s e  ~ = 0, i .e. ,  an ideally plast ic medium.  The C o u l o m b - M o h r  fluidity condition 
(1.1) goes o v e r  into the T r e s k  condit ion 

a~ --  a, = Y. (4.1) 

Taking account  of  (1.16) and (1.18), the  solution of  (1.12) has  the fo rm  

g r ( r ) = _ p a _ T L i ~ ( ~  ) 4 E  _ p o ( . 7 _ X ~ e  2r 4] �9 
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Taking account  of  condition (1.10), we wr i te  in the plast ic  domain 

l �9 l a~ (r, = - - p ( a ) -  2Y1 n -~- -k p,tp (-g- _ _~_) _ :z~  ~ _ _~) .  

L e t  us  use  the condit ion (1.19) on the rup tu re  f ront  a t  the  t im e  the  cavi ty  stops (~e = Xp = X), then 
3 3 

4E am -- % _~ Oo %1 + 2Y In R_~. p,, 

Using the  fact  that  (ao/am)a<<l, we wr i te  the  solution in the plast ic domain 

. 4 E  /%a \a \  

A s is  seen f r om (4.2), the radia l  s t r e s s e s  can  r each  a maximum at the point r , :  

r ,  = 2~ _2Yln a-'~ + ph--p(a=) + -5- ~-ff'~] j" 

Using (1.16) and (4.1) r e su l t s  in express ing  the radius  of the rup tu re  zone in an ideal plast ic medium as  

(4.2) 

(4.3) 

[ 2 E ~i/3 (4.4) 
R,~ = a,. ~y 7}  

Substituting (4.4) into (4.3), we obtain 

- = In --k t -~ %: .7 T 2Y 

As es t imates  f rom [6] show, for  small  Ph we have P ( a m ) - P h  > 0. Taking into account  h e r e  that  u ~ 
10 -3 fo r  ideal plast ic media ,  the r ad ius  r ,  t u rns  out to be l ess  than 2.53m; i .e. ,  the  maximal  s t r e s s e s  will 
be ne a r  the cavi ty  o r  on i ts  boundary.  As the  l i thostat ic  p r e s s u r e  grows P(am) - P h  d e c r e a s e s  and can change 
sign. In this  c a se  r ,  grows,  and the  domain of  maximal  c o m p r e s s i v e  s t r e s s e s  is shifted f ro m  the cavi ty .  

We obtain for  the maximal  c o m p r e s s i v e  s t r e s s e s  f r o m  (4.2) and (4.5) 

- - % ( r , ) =  p(a,,~)+ 2Y[aZ~--ln at* _ t]. 

Thus for  r , ~  2 .5a  m (for p h ~ P ( a m ) )  the maximal  s t r e s s  exceeds  the p r e s s u r e  in the cavi ty  by a quantity 
1.5Y. 

Analys is  of the s t r e s s  s ta te  in the neighborhood of  an expanding cavity at the t im e  of stopping pe rmi t s  
noting the following: 

1. Pinching ex is t s  in a dilating medium with d ry  f r ic t ion  for  ~>  G , .  A dependence of  (~, on A is ob-  
tained: ~ ,  =s~ +0.1A (s~ = 0.06; ~0, =1.5o). However,  as  is indicated in [6, 7] ~-~12-30 ~ in r ea l  soi ls  with 
f r ic t ion .  F igu re  3 shows that  f o r  these  angles the dependence of r ,  on ~ is sufficiently weak, and r , ~  23 m. 
The peak s t r e s s  - e r r ( r , )  moves  f r o m  the cavi ty  under  loosening and diminishes;  under  c o m p r e s s i o n  a shift  
towards  the cavi ty  o c c u r s  and the  peak is increased .  

2. The radius  R m of the pulver iza t ion  zone and the minimum in the elast ic  domain r * *  depend substan-  
t ia l ly  on w. Under loosening, Rm and r**  increase ,  while under compress ion  they d ec r ea se .  

3. In the c a se  of  plast ic media ,  the zone of maximum co m p res s iv e  s t r e s s e s  tu rns  out to be near  the 
cavi ty  fo r  mode ra t e  l i thostat ic  p r e s s u r e s .  The peak s t r e s s  moves  away f rom the cavi ty  as  the l i thostat ic  
pressure grows. 
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In underground explosions executed in the interests of ejection, downcomer funnel or  bulging 
hillock formation, the soil properties influence not only the quantitative parameters substan- 
tially, but also the qualitative pattern of the explosion. Thus, under the same conditions of 
charge embedding and power, a downcomer funnel or  bulging hillock can be formed depending 
on the properties of the rocl~ The majority of explosions are  performed in hard rock. Hence, 
the model of the soil should be suitable to describe its fundamental properties. A model of 
rocky soil is presented in this paper, the scheme for a numerical computation of the problem 
is described, and resul ts  of certain computations are presented. 

1. An unruptured medium is considered elastic. Rupture sets in instantaneously upon the attainment of 
definite cr i ter ia .  Right after rupture, which occurs in brittle material under insignificant strains, the pulver- 
ized rock consists of separate compactly contiguous pieces. In this state its volume density is 1.5-1.7 t imes 
greater  than in rubble fill. The compact fractured medium and loose rubble differ quite radically in the ef- 
feotive value of the internal friction and ~100 times in the volume compressibility. It is hence important to 
*~ke account of the gradual change in the properties of the ruptured medium as it loosens. 

In both states, before and after rupture, the medium is considered isotropic. The pressure and degree 
of looseness are taken as parameters  of the state in this model. The influence on the mechanical properties 
of the size of the pieces, their  shape, and temperature are negleoted. 

The equations of state of a ruptured medium are  written in differential form. The change in density is 
defined by the equation 

dp/9 = d p / K , : ( p ,  p) -- ~I)(p. p)~7:_,~?t (1.1) 

where J2 is the second invariant of the strain rate  deviator. 

The f i rs t  t e rm on the right corresponds to pure volume strain, while the second describes the dilatancy 
effect. An analogous equation was examined in [1] in application to friable media and soft soils. In this paper 
(1.1) is extended to all states of ruptured rocky soil, including rubble, and a state with dense packing. Hence, 
K1, 2 and # are understood to be strongly varying functions of their  arguments. The irreversibili ty of the 
volume strain is taken into account by the fact that the absolute value of the volume compressibility Kt, 2 de- 
pends on the sign of dp. In tlie construction of the function ~(p, p) it is assumed for simplicity that: 

a) for dp= 0 the shear strains result  only in loosening of the substance; 

b) the loosening intensity vanishes at the extreme curve P2(P) (Fig. 1) corresponding to monotonic com- 
pression of the loosest rubble. The domain of possible states of the ruptured medium is shown in Fig. 1. 
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